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Note 

Using Physical insight: 
The Relativistic Compton Scattering Kernel for 

Radiative Transfer 

I. INTRODUCTION 

Until recently, physicists have had limited access to supercomputers, and thus an 
important tool to solve analytically intractable problems. Now, however, with the 
National Science Foundation Supercomputer Centers, the emergence of vector 
“mini-supercomputers,” massively parallel systems, “MIPS’ machines, and a 
myriad of other computational facilities, today’s physicist has a potpourri of devices 
to simulate complex phenomena. The supercomputer has moved from being the 
elite, dedicated tool of the cryptologist or nuclear effects scientist, to being 
accessible to all fields of science. For example, the recent Conference on Grand 
Challenges to Computational Sciences [l] brought together scientists in areas as 
diverse as biology, physics, and social engineering to discuss the impact of super- 
computers on society. 

With all the promise that this field brings, there are dangers associated with com- 
putational physics. In experimental physics (where with some experiments, one’s life 
may be endangered) researchers must know what they are doing; in theoretical 
physics (where there is no mortal danger, aside from having a bookshelf fall on 
them), the same holds true; whereas for computational physics, the old adage 
“garbage in, garbage out” dictates the direction of research. It is extremely easy to 
run a “black box” program, and unless the physicist is acutely aware of vital issues 
(stability and convergence, for example), computer generated answers may have no 
connection with physical reality. This is a growing concern with the large influx of 
scientists into computational physics. 

It is with this motivation that we present an innovative way of viewing relativistic 
Compton scattering. In particular, we show that errors of up to lo4 are possible 
when “standard” numerical methods are used to solve for the relativistic Compton 
scattering kernel. The emphasis in this note is on the importance of using physical 
insight before a calculation is made. 

II. BACKGROUND 

The Compton scattering kernel (CSK) describes how photons interact with a 
relativistic nondegenerate gas of free electrons. The CSK is defined to be the quan- 
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turn-mechanical Klein-Nishina cross section averaged over a relativistic distribu- 
tion of electrons. The Klein-Nishina formula for a free electron moving with a 
velocity v, scattering a photon initially traveling in direction si with energy v (in 
units of the electron rest energy m,c’) to a new direction 6’ and energy v’ is [2] 
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where y = hvlm,c2, y’ = hv’jm, c2, rO is the classical electron radius, and the Dirac 
delta function forces energy-momentum conservation during the scattering process. 
The relativistic Maxwellian distribution ,f(v, T,) for a nondegenerate gas of free 
electrons at a temperature T, is 
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where K, is the modified Bessen function of the second kind, k is Boltzmann’s con- 
stant, and c is the speed of light. For an electron density of A’,, the CSK is defined 
as the average of the KleinNishina cross section (1) over the relativistic 
Maxwellian distribution (2): 
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(3) 

Using the following substitutions 
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we write the CSK in a more tractable form as 

where z = kT,/m,c’. 

III. SOLUTION OF THE CSK 

A. Background 

Figure 1 shows a typical gedanken scattering experiment. Consider a coordinate 
frame such that a free electron is situated at the origin of our coordinate system and 
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FIG. 1. The traditional method for setting up a coordinate axis for scattering problems takes the 
incoming photon (y. si) along the z-axis, scattering to a new photon (y’, .@) confined to the S-Z plane. 
Here y (y’) denotes the energy and si (6’) denotes the direction of the incoming (scattered) photon, 0’ 
the polar angle of the scattered photon with respect to the z-axis, 4:. the azimuthal angle of the scattered 
electron with respect to the x-axis, and hi. the direction of the scattered electron, 
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an incoming photon (y, 6) propagates along the z-axis. After the scattering inter- 
action, we can always choose our coordinate axis such that the outgoing photon 
(;I’, fi’) is restricted to the x-z plane. 

To solve for (4) we now consider a new frame with coordinate axis parallel to 
that of the original frame such that the electrons have a velocity v; in this new frame 
the differential in (4) may be written as dv = u* dfi,.. Continuing the analogy in 
Fig. 1, d,, is described by 8,., d,, and fi’ by 8’ and d’, where 0 is the polar angle 
with respect to the (old or new) z-axis and 4 is the azimuthal angle with respect to 
the (old or new) .u-axis. We note 4’ = 0, since 8’ lies in the x-z plane and cos 8’ = 
fi.&=& 

Pomraning has taken advantage of the Dirac delta function in (4) and evaluated 
the integral over 4,. [2]. Here we present the result and refer the reader to 
Pomraning for the details of this integration: 

(5) 

where 

& = cos 8 I’ 3 g(u, A>) = 441 - upJc)[S - 1 f A( 1 - upJc)/y’], 

and A c [ - 1, 1 ] is the subset of those values of pU that cause the argument of the 
Dirac delta function to vanish for some dve [0, rr]. 

The expression in (5) is quite formidable, and as Pomraning notes [2], “This is 
as far as it appears profitable to proceed analytically.” 

Various authors have attacked (5) to numerically evaluate the integrals in the 
CSK. Among the first was Stone and Nelson [3] who used Gaussian quadratures 
to generate large tables for use in computer calculations; others [46] employed 
perturbative methods including computing Legendre moments and making the 
Fokker-Planck approximation (valid for photon energies and electron tem- 
peratures < electron rest energy). 

There are certainly regions where these approximations are valid; however, there 
lies a danger in trying to extend the limits of these regions: incorrect answers result. 
For example, when photon energies exceed the electron rest energy, the Fokker- 
Plank approximation is invalid. Thus, one would like to reduce (5) so that the 
solutions are not so senstitive to variations in the parameters. 

There lies a major problem with this: after many years of study, it appears that 
others [2-61 have reduced (5) as far as it will go. If there is a less formidable 
representation of the CSK, then rather than attempting to reduce (5), it may be 
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more productive to return to the basic assumptions behind the choice of coordinate 
frame. This will allow us to gain fresh insight into the solution of the CSK and 
perhaps come up with a simpler, more physical representation. It is in this spirit 
then that we return to our original gedunken experiment. 

B. The Photon Momentum Transfer 

Feynman [7] viewed one aspect of the scattering process as the absorption and 
subsequent emission of a photon (denoted in Fig. 2 by its momentum q) by a free 
electron (p). During this process, a virtual electron consisting of the electron and 
absorbed photon is created with momentum p +q. The scattered electron and 
photon have momentums p’ and q’, respectively. For this interaction the photon 
momentum transfer is delined as 

(6) 

If this is an accurate representation of the scattering process, then one might 
imagine that the symmetries involved in scattering are ingrained in the photon 
momentum transfer. If this is indeed so, then the coordinate system used to solve 
(4) should reflect that basic attribute of the process. 

FIG. 2. One of Feynman’s representations of the scattering process shows the creation of a 
“quasi-particle” q + p carrying the energy and momentum of the incoming photon q and electron p. 
The scattered entities are denoted by primes. 
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In other words, taking the z-axis of integration along the photon momentum 
traufer, rather than trying to force an artificial coordinate axis upon the system, 
is “nature’s way” of reducing the symmetries. This is shown in Fig. 3-the 
azimuthal and polar angles define the symmetries in this coordinate system and are 
not contingent upon the initial selection of a coordinate axis as in Fig. 1. 

If one approaches (4) in this manner, performing the integration about the angles 
is straightforward. We refer the readers to the literature [IS, 91 for the details and 
simply present the result 

(7) 

where 
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FIG. 3. The direction of the photon momentum fransfer is n = q’ -9. Part (a) shows -II (using q and 
q’ from Fig. 2) for ease in visualization. Part (b) depicts the angular symmetries of the scattered photon 
an electron around the photon momentum transfer. It is this symmetry that reduces the scattering 
integral to a simple expression. 
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CONCLUSIONS 

The integral in (7) cannot be reduced further; however, there are several methods 
available to the readers to quickly compute the CSK [S, 91, based upon a power 
series expansion, an asymptotic series, and a rational approximation. These 
algorithms have been realized in a FORTRAN code available from the authors. In 
addition, others [lo] have relined these algorithms by removing the singularity in 
(7) and will soon present their work in the literature. 

Turning now to some attributes of (7), we note that detailed balance is satisfied; 
e.g., 

y2g(y + y’, 5, z) Ed Yir = ~‘~r~(y’ + y, <, 5) ,-;“I’ (8) 

which is essential so that the CSK is symmetric in y and y’. We also note that the 
intrinsic features of the CSK are contained in ,Z’,, with everything else in the CSK 
varying smoothly. 

The exponential factor in C, has a simple physical explanation. The smallest 
electron energy for which photon scattering is possible for a given y, y’, and { is 
E,, nz,c2; an electron of probability e-‘-l’ or lower must therefore be sampled for 
this scattering to occur. Thus, it is highly inaccurate to expand the t dependence 
of c in Legendre polynomials because one can choose physically relevant values of 
y, y’, and r for which e -‘+lr changes many orders of magnitude with arbitrarily 
small variations in 5. 

In addition, numerical solutions to (5) that use weighting functions to evaluate 
the double integrals do not catch this rapid change in C,. We have performed a 
random comparison of the Stone-Nelson tables using lo5 points and have found 
the Stone-Nelson cross sections may be 10 to 100,000 times too large. We attribute 
this to the rapidly fluctuating exponential in C,. 

In conclusion, the solution of the CSK provides an example of how a seemingly 
intractable problem may be reduced using physical insight. Examining basic sym- 
metries in nature and taking advantage of those symmetries may shed light on 
otherwise pertinacious problems. 

Computers are an invaluable tool for the physicist-in fact the motivation for 
our work came from the need to implement Compton scattering in the discrete ray 
method radiation transport subroutines used at the Lawrence Livermore National 
Laboratory; however, we submit that computational physicists are charged with 
ensuring they not adopt a “if it compiles, publish” attitude, and instead spend time 
examining the physical basis behind the phenomenon. 
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